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Abstract

If o is a root of unity in an integral domain @ of characteristic zero, (x — 1)* € n(, and no
prime divisor of n is a unit in O, then o = 1 if n is a positive integer outside a finite set deter-
mined by k. We prove this result and generalizations of it, and give results when # is an element
of the finite exceptional set. We give applications to endomorphisms of semi-abelian varieties,
compatible systems of /-adic representations, and the cohomology of projective varieties.

1991 Math. Subj. Class.: 08A35, 11G10, 14F20

1. Introduction

A result of Serre (see [6, Lemma 4.7.1] and [9, Theorem on p. 17-19]) says that if
an automorphism of finite order of a semi-abelian variety induces the identity on the
scheme-theoretic kernel of multiplication by n, then it is the identity if n > 3, and its
square is the identity if n = 2. This result is useful in the study of moduli spaces of
abelian varieties with full level n > 3 structure. Serre’s Lemma relies on the fact that
if n > 3 then every root of unity which is congruent to 1 modulo » is 1. This idea
dates back to Minkowski (see [8]), who proved that an integral matrix of finite order,
which is congruent to the identity modulo n, is the identity if n > 3.

In this paper we give generalizations and variations of the Serre—Minkowski results.
For example (see Corollary 3.3), if k and n are positive integers, o is a root of unity
in an integral domain O of characteristic zero, (o — 1)* is divisible by n, and no
prime divisor of n is a unit in @, then o = 1 if n is outside of a certain finite set of
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prime powers determined by k. (The case & = 1 is the Serre-Minkowski case.) The
proof relies on the arithmetic of cyclotomic integers. Although the ideas are simple, the
result is useful and does not seem to have been noticed before. We give best-possible
restrictions on o when # is in the finite exceptional set. We have results for rings that
are not necessarily integral domains (Section 4), and we have applications to matrix
rings, eigenvalues, projective modules, and quasi-unipotent elements (see Sections 6
and 7). We provide additional information when »n is in the exceptional finite set (see
Theorems 5.1, 6.8, 7.4, 8.2 and 8.3), and give examples which show that our results are
sharp. In Section 8 we give applications to endomorphisms of semi-abelian varieties,
which generalize Serre’s result. In Section 9 we give applications to compatible systems
of /-adic representations and the cohomology of projective varieties.

We believe these results have independent interest. We also expect that they will
have additional applications. For some applications of special cases of these results to
abelian varieties, see [13—-15].

A different variation on Minkowski’s theorem, due to Selberg, says that if K is a
field of characteristic zero and H is a finitely generated subgroup of GL,(K), then H
has a net (and therefore torsionfree) subgroup of finite index (see 17.7 on p. 119 of
[1]). For other variations on Minkowski’s theorem see also Chapter 3 of [16], which
deals with » an indecomposable element in a unique factorization domain or a prime
ideal of a Dedekind ring in characteristic zero.

Serre pointed out to us another generalization of Minkowski’s theorem (see p. 223
of [2], for example). If G is a formal group over a discrete valuation ring O of residue
characteristic p, and # is a uniformizing parameter, then G(Q) has trivial prime-to-p
torsion, and has trivial p-torsion if ord,(p) < p — 1. Minkowski’s theorem follows
by taking G to be the formal group of the general linear group. The result can also be
applied to the formal group of an elliptic curve with good reduction.

2. Notation

All rings in this paper are rings with identity. However, we do not assume 0 # 1;
that is, we do not exclude the zero ring. We denote the mth cyclotomic polynomial
by @,, and the integers and rational numbers by Z and Q, respectively. We use the
convention that anything raised to the power 0 is 1. We write M,(O) for the ring of
g x g matrices over O, and write 1; (or  when it is unambiguous) for the g x g identity
matrix.

Definition 2.1. If k is a positive integer, define a finite set N(k) by
N(k) = {prime powers /”: 0 < m(¢ — 1) < k}.

Let R(k,1) = 0; if n is a positive integer which is not in N(k), let R(k,n) = 1; if
1 #£n=¢"¢c N(k) with £ a prime, let

R(k, n) = ™"  where r(k,n) =max{r € Z*: m(¢/ — 1)¢"' <k}.
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For example,
N(1) =1{1,2}, N(Q2) =1{1,2,3,4}, N@3)=1{1,2,3,4,8},
N(4)=1{1,2,3,4,5,8,9,16};
R(1,2) =2, R(l,m)y=1ifn>3,
R(2,2) =4, R(2,3) =3, R(2,4)=2, and RQ2,n)=1ifn>5.

3. Integral domains of characteristic zero

Theorem 3.1. Suppose n, k, and M are positive integers, O is an integral domain
of characteristic zero such that no rational prime which divides n is a unit in O,
b(1),...,b(k) are integers relatively prime to M, a € O, o« = 1, and

k
[ — 1) € no.

j=1

Then ofn) = 1,

Proof. Without loss of generality we may assume M is the exact multiplicative order
of . If M = 1, then « = 1 and there is nothing to show. Suppose M # 1 and let /~
be a prime power which exactly divides M, with r > 1. Let { = o™/". For all integers
i, —1e(@—1)0, so

k
[ = 1) eno.

j=1

If i is a positive integer less than # and not divisible by ¢, then the elements (' — 1
each generate the same ideal in Z[{] C O, and therefore,

tF=@-()= ] a-0Feno,
i€(Zjer7y*

where ¢ is the Euler g-function. Thus, n~9¢") € ©.

We will now show that Z[1/n]N O = Z. Suppose B € Z[1/n]NO. If § ¢ Z, then
we can write § = ;‘7’5 where a, b € Z and p is a prime dividing n but not dividing a.
Since p does not divide @, we have % €7+ Z% =7 + ZbB C O, contradicting the
assumption that no rational prime which divides n is a unit in O. Therefore, f € Z.

Therefore, £*n=?¢") € Z. Thus, n®¢") divides #*, so n is a prime power of the form

£™ with
k>mo(t)=m( — D¢ >m( - 1).

Therefore, n € N(k). Further, n is a power of every prime which divides the order of
&, so the order of « is a prime power £7, with m(¢£ — 1)¢"~! <k. O
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Remark 3.2. By taking O to be the ring of integers in an algebraic closure of Q,
fixing n = /™ € N(k), and letting o be a primitive R(k, n)th root of unity, we see that
the upper bound of R(k,n) on the order of o in Theorem 3.1 is sharp.

The most interesting case of Theorem 3.1 is when H(1) = --- = b(k) = 1, te,
when (& — 1) € nO. For ease of exposition and notation, we will restrict ourselves to
that case from now on, although our results could all be stated in the generality of
Theorem 3.1.

Corrollary 3.3. Suppose n and k are positive integers, O is an integral domain of
characteristic zero such that no rational prime which divides n is a unit in O, a € O,
« has finite multiplicative order, and (a — 1)* € n®. Then of®" = 1; in particular,
a=1ifné¢ N(k).

4. Rings in characteristic zero

Remark 4.1. If O is a non-zero ring, then the natural map O — O ®z Q is injective
if and only if

o the natural map Z — QO is injective, and

e no non-zero rational integer is a zero-divisor in O.

Definition 4.2. If 4 is a subset of a ring O, we say 4 has no O-zero divisors if there
do not exist x € 4 and 0 # y € O such that xy = 0 = yx. In particular, if 4 has no
O-zero-divisors then 0 ¢ A.

Lemma 4.3. Suppose O is a non-zero ring and ¢ is a rational prime. Then:

(@) If 1 + 2O has no O-zero-divisors, then ¢ is not a unit in O.

(b) If O has no non-zero infinitely ¢-divisible elements, then 1 + £©O has no O-
zero-divisors.

Proof. (a) If / were a unit in O, then we would have 0 € 1 4+ /O, contradicting the
assumption that i + /O has no O-zero-divisors.

(b) f (1+¢x)y =0 withx, ye€ Oand y # 0, then y = —/xy = £2x’y =
-+ = (—=1)'¢'x'y for all positive integers i, contradicting the assumption that © has no
non-zero infinitely /-divisible elements. O

Theorem 4.4. Suppose O is a ring such that the natural map O — O ®z Q is
injective, and suppose k and n are positive integers. Suppose that for every rational
prime divisor £ of n, 1 + ¢O has no O-zero-divisors. Suppose « is an element of O
of finite multiplicative order such that (x — 1)* € nO. Then oR&m = 1.

Proof. Since « has finite multiplicative order and the natural map O — O ®z Q is
injective, Q[«] is a finite dimensional semisimple commutative Q-algebra and therefore
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is a direct sum of number fields P;_, K;. Let O’ = ONQ[«]. Then O’ @ Q = Q[a] =
@;zl K;. Let m; be the projection of Q[a] onto the ith factor, and let O; = m;(O").
Then K; = O; ® Q, and O’ is a subring of @;_, 0.

We will show that no rational prime divisor of » is a unit in any of the integral
domains O;. If this were not the case, then some prime divisor / of n would be
a unit in some O;, say O;. An inverse of ¢ in O; is of the form m;(x) for some
x € O' CO. We therefore have 1 — ¢x € @5:2 O;. Since O'CO'®Q = @:zl K;, we
have O’ NK; # {0}. Let y be a non-zero element of O’ NK;. Then (1 — #x)y = 0,
contradicting the assumption that 1 + /O has no O-zero-divisors. Therefore no rational
prime divisor of » is a unit in any O;.

Let o; = mi(a) € O;. Then a = Zle a;, and a;o; = 0 if i # j. Since (a — 1) € n0O,
we have (a; — 1)¥ € nO; for every i. Since « has finite multiplicative order, so do
all the «;. By Theorem 3.1, «f*M s the identity in the ring O;, for every i. But

i

RN = (Z§=1 al_)R(k,n) — Zt P SLTO N N

=17

5. Extremal exceptional cases

We provide additional information in the extremal exceptional case k = me(£"). This
case includes all the cases with k = 1 or 2 and 1 # n € N(k). The direct summands
in the following theorem are not necessarily non-zero.

Theorem 5.1. Suppose ¢ is a prime, m and r are positive integers, O is a commutative
ring, the natural map O — O ®z Q is injective, 1 +£O has no O-zero-divisors, « € O
is an element of finite multiplicative order, and

(ot — l)m(/’—l)/"‘ e /mo.

Then of = 1 and there are rings A and O, in O and elements 6 € A and a, € O,
such that O =A@ O,, o = d+a,, d is an {7 'th root of unity in A, and «, satisfies
the {"th cyclotomic polynomial in O,.

Proof. If G is a finite abelian group, let G be the group of characters of G. Let Q
denote an algebraic closure of Q. Then the group ring Q[G] is the direct sum of the
one-dimensional subspaces ex@[G] = C—Dex, where for y € G, the idempotent e, is
defined by

e, = éZx‘l(o)o € Q[G].

oG

From now on take G to be a cyclic group of order £”. Then
QIG] =~ Q)G —-1).

For0<i<rletX;,={x¢ G: y surjects onto the group of £‘th roots of unity} and
let P; = ¥ ,cx.e,. Then X; is stable under Gal(Q/Q), P; € Q[G], P; is an idempotent,
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Q[G] = @_, PQ[G], and P,Q[G] = Q[x]/Psi(x) = Q({;) where {; is a primitive
/th root of unity. For y € G, the values of ¥ on G are #'th roots of unity, so in
particular are algebraic integers. Viewing P; as a polynomial P;(x) € Q[x] (modulo
@/i(x)), the definitions of e, and P; show that Pi(x) € /~"Z[x]. For 1 < i <r we
have
II -8 =Wagye - =¢7, (1)
je@ier oy

where Ng;,yyo denotes the norm from Q({;) to Q.

Let n=¢™ and k = m(£ — 1)¢"~'. Then R(k,n) = ¢", and Theorem 4.4 implies that
a’ = 1. Sending x to a gives a surjective @-algebra homomorphism

(Q[G] ) Q[x)/(x" — 1) — Qfa).

For 0 <i <r, let p; be the image of P; in Q[al, i.e., p; = Pi(a) € £77Z[a]. We can
make the following identifications:

Qx] = Pram = Pa).

pi7#0 pi7#0
We will use the hypotheses on a to show that p, € O. Let
= I a-a)
JE@ir Ty

By our hypotheses, ™ € £"O. We have poff = 0, and (1) implies that p,f = ¢/ p;
for 1 <i < r. Therefore,

B=S"¢""p and pr=>r""p.
i=1 i=1

If r =1, then ™ = ¢™p; € MO, so p; € O by the injectivity of the natural map
O — 0O Rz Q. Suppose r > 1. Let

r—1 r—1
B= BmH(ﬂm _ (’"/’_l), C = H(l _ fm(/’_'-l))_

i=1 i=1
Then B € /O, and C is a non-zero integer which is not divisible by the prime 7.
Since pof = 0 and p(f™ — £my = 0, we easily see that B = /™ Cp,. Therefore,
™ Cp, € £™(O. Since the natural map O — O ®z Q is injective, Cp, € O. But
" pr € Z[a] C O. Since ¢ and C are relatively prime, we have p, € O.

Let 6 = (1 — p,)a. Then o =1- pr and p, @, () = 0. Letting 4 = (1 — p,)O,

O, = p,O, and %, = p,a, we obtain the desired result. [

Remark 5.2. Retaining the notation of Theorem 5.1 and its proof, let 8’ =6+ p, € O
and y, = (1 - p;)+% € O. Then o = &'y, = 3,8, (3')"" =1, and (3, — )®¢-(3,) = 0.
(Of course, this gives no additional information in the case r = 1.)



A. Silverberg, Yu.G. Zarhin/Journal of Pure and Applied Algebra 111 (1996) 285-302 291

Remark 5.3. A computation shows that a formula for the idempotents P;(x) € £~"Z[x]
is given by

£—1 o(f) if ],
Pix) = /“’Zajxj where a; = 71 if £ but £ 5,
j=0 0 otherwise.

Example 5.4. The idempotents py,..., p,—; in the proof of Theorem 5.1 are not nec-
essarily elements of O. For example, let O be the commutative ring of integer matrices

of the form (Zg) and let o = (‘1)(1)) m=1,r=2,and £ = 2. Then

2 -2
2 _ 1 =
=1 and (x—1) (_2 2) € 20.

However,
1 2 3,1 /11
po—z(1+d+d +a)—2<1 1) ¢ 0,
and

D PRI S N B S N
pr=40-a+a <>z)—2(_1 1>¢0-

Here, p, = 0.

6. Matrix rings

Lemma 6.1. Suppose O is a commutative ring, the natural map O — O ®z Q is
injective, ¢ is a rational prime, 1 + £O has no O-zero-divisors, and g is a positive
integer. Then 1+ ¢My(O) has no My(O)-zero-divisors.

Proof. Let O, be the localization of O with respect to the multiplicative semigroup
1+ /0. Our assumptions on O and ¢ imply that the natural map O — O is injective.
Assume that there are matrices 4, B € M,(O) such that (1 +74)B = 0. We will show
B = 0. The determinant of 1 +/4 is in 1 +70, and therefore is a umt in O,. Therefore
1 + 4 has an inverse, call it ¥, in My(O). Then B = Y(1 + £4)B = 0. We have
shown that 1 4+ /M,(O) has no M,(O)-zero-divisors. [

Theorem 6.2. Suppose n, k, and g are positive integers, O is a ring such that the
natural map O — O ®z Q is injective, and either

(a) for every rational prime divisor ¢ of n, O has no non-zero infinitely ¢-divisible
elements, or

(b) O is commutative and for every rational prime divisor £ of n, 1 + (O has no
O-zero-divisors.

If A € My(O) is a matrix of finite multiplicative order such that (A—1 ¥ € nM,(0),
then AR*M — |
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Proof. Let £ be a prime divisor of n. In case (a), since @ has no non-zero infinitely
¢-divisible elements, neither does My(O). By Lemimas 4.3 and 6.1, in both cases 1 +
M,(O) has no My(O)-zero-divisors. Theorem 6.2 now follows from Theorem 4.4. [1

In Theorem 6.3 below, the congruence condition on the g x g matrix 4 is that for

some ¢ € {1,...,k}, 4 modulo 2* can be viewed as a ¢ x ¢ matrix
1, *
0 I,

whose entries b;; are rectangular matrices such that for i = 1,...,¢, the entry b; is a
square identity matrix (not necessarily all of the same size), and such that for i > j,
b;; is a rectangular zero matrix.

Theorem 6.3. Suppose k and g are positive integers, k > 2, O is a commutative ring,
and the natural map O — O ®z Q is injective. Suppose that 1+ 20 has no O-zero-
divisors. Suppose A € My(O) is a matrix of finite multiplicative order, and suppose
that A modulo 2*M,(O) has main diagonal consisting of at most k square blocks of
identity matrices and is zero below the diagonal blocks. Then A = I.

Proof. The hypotheses imply that (/ —4)* € 2*M,(O). Since R(k,2¥) = 2, by Theorem
6.2 we then have 4% = I. This implies (for example, by induction on k) that (/ —4)F =
211 — 4). Therefore 2*~1(1 — 4) € 2*M,(O), which implies that / — 4 € 2M,(O).
Therefore 4 = I + 2B where B € M,(O) and where B modulo 2M,(O) consists of
at most k square blocks of zero matrices on the main diagonal (corresponding to the
blocks of identity matrices in 4 modulo 2¢M,(©)) and is zero below the diagonal
blocks. Then 0 =1 — 42 = (I + A)YI — A) =2(I + B)({ — 4), so 0 = (I + B)( — A).
Taking the determinant we have det(/ + B) € 1 4+ 20, so det({ + B) is a unit in the
localization of O with respect to 1 + 2. Thus the map defined by multiplication by
I+ B is injective, so { — 4 =0. [J

Theorem 6.4. Suppose n and g are positive integers, n > 4, O is a ring such that the
natural map O — O ®z Q is injective, and either

(a) for every rational prime divisor ¢ of n, O has no non-zero infinitely ¢-divisible
elements, or

(b) O is commutative and for every rational prime divisor £ of n, 1 + £ has no
O-zero-divisors.

If 4 € My,(O) is a matrix of finite multiplicative order, 0 < a < g, and b is an
a x (g — a) matrix over O such that

I, b
Ae <O Ig—a> + nMy(O),

then A =1.
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Proof. The hypotheses imply that (4 — I)? € nM,(Q). By Theorem 6.2, we then have
A =1 if n > 5. Suppose n = 4. Under the hypotheses in case (b), Theorem 6.4 follows
by taking & = 2 in Theorem 6.3. Now assume we are under the hypotheses in case
(a). Then Theorem 6.2 implies that 42 = I. Write

4o I, + 4o B
4y I_,+45

with matrices «, B, 7, and & of appropriate sizes. Since 4% = I, we have 0 = 20+4a® +
By, 0= B+20f+2p5, 0 =7y+2y0x+ 26y, and 0 = yB + 26+ 46%. By our assumptions,
O, and therefore also M,(O), has no non-zero infinitely 2-divisible elements. Therefore
we have directly that 8 = 0 and y = 0, from the second and third equations. Then the
first and fourth equations similarly imply that « =0 and 6 =0, s0 4 =1. O

Example 6.5. (a) Let

1 -1
A= <3 _2) € My(2).

Then

1 -1
Ae (0 1>+3M2(Z)

and A4 has multiplicative order 3.
(b) Let

-11
A= (_2 1) € My(2).

Then

Ae (é i)+2M2(Z)

and A has multiplicative order 4.

Lemma 6.6. Suppose O and O are integral domains of characteristic zero, O is a
subring of O, and every element of O is integral over O. If v € O and v is not a
unit in O, then v is not a unit in O.

Proof. Suppose v—' € O@. Then v~! is integral over O, so there exist m € Z* and
g, ...,am_1 € O such that v +a,_ v ™" +---+a;v" ! +4a¢ = 0. Multiplying by v*~!
and rearranging the equation gives v™! = —ap_; — @m_av — -+ — aopv™ !, Therefore
v~! € O, contradicting the assumption. [J

Theorem 6.7. Suppose O is an integral domain of characteristic zero, n and k are
positive integers such that no rational prime which divides n is a unit in O, A € M,(O)
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satisfies (A — 1)¥ € nM,(O), and 1 is an eigenvalue of A which is a root of unity.
Then ARGR) — 1,

Proof. View the eigenvalues of 4 as lying in the integral closure @ of O in an
algebraically closed field containing O. By Lemma 6.6, no rational prime which divides
n is a unit in O. Write(4 — I)* = nB with B € M,(O). Then we have (1 — 1)f = nu
where u is an eigenvalue of B, so u € O. Applying Corollary 3.3 to the ring O and
the element A shows that 4 is an R(k,n)th root of unity. [

Theorem 6.8. Suppose ¢ is a prime, B is a ring such that the natural map B — B®zQ
is injective, and either

(a) B has no non-zero infinitely /-divisible elements, or

(b) B is commutative and 1 + (B has no B-zero-divisors.
Suppose m and r are positive integers, P is a finitely generated projective right B-
module, and a is an automorphism of P of finite order such that

(o — 1)y"=D" ¢ M Endp(P).

Then P is a direct sum of a-invariant right submodules Py and P, of P such that
o " acts as the identity on P, and ®,(x) acts as the zero map on P,.

Proof. Since P is a finitely generated projective right B-module, it is a direct summand
of a free right B-module of finite rank, say B¢ = P& Q. Therefore we can view the ring
Endg(P) of right B-module endomorphisms of P as contained in the ring M,(B), with
Endg(P) = {y € My(B): y(P)CP,y(Q) = 0}. Write 1p, 1o, and 7 for the identity
elements in Endg(P), Endp(Q), and M,(B), respectively. Then I = 1p + 1p. Since
the patural map My(B) — My(B) ®z Q is injective, so is the natural map Ends(P) —
Endp(P)®z Q. In case (a), My(B), and therefore Endg(P), has no non-zero infinitely /-
divisible elements, and by Lemma 4.3, 1p+¢ Endg(P) has no Endg(P)-zero-divisors. In
case (b), /+¢/M,(B) has no M,(B)-zero-divisors by Lemma 6.1. If there were elements
x, y € Endp(P) such that (1p+¢x)y = 0 = y(1p+7£x), then (I +£x)y = 0 = y({ +7¢x)
in My(B), since 1gz = 0 =zl for every z € Endg(P). Therefore 1p + ¢/ Endg(P) has
no Endp(P)-zero-divisors. Let O’ = Endg(P) N Q[a]. Then ¢’ is a commutative ring
such that the natural map O’ — O’ ®z Q is injective, 1 +£O’ has no O’-zero-divisors,
and (a — 1"/~ ¢ /m©’ Theorem 5.1 provides an idempotent p, € @ such
that, letting 6 = (1 — p,)a € O’ and o, = p,o € O’, we have 8 =1- p, and
prPs(a) = 0. Let Py = §(P) and P, = a,(P). Then P = P, & P,, and P; and P,
satisfy the required conditions. [J

Remark 6.9. A ring B satisfies (a) or (b) of Theorem 6.8 if and only if its opposite
ring does. Therefore Theorem 6.8 also holds if the word “right” is everywhere replaced
by “left”.
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Theorem 6.10. Suppose ¢ is a prime, m and r are positive integers, O is an integral
domain of characteristic zero with no non-zero infinitely £-divisible elements, £O is a
maximal ideal of O, M is a free O-module of finite rank, and A is an endomorphism
of M of finite multiplicative order such that (A — 1Y"¢=DC"" ¢ fmEnd(M).

(a) If r > 1, then the torsion subgroup of M/(4 — )M is killed by ¢"~'.

(b) If r = 1, then the torsion subgroup of M/(A— 1)M is a vector space over O/{O
of dimension c/({ — 1) where ¢ is the corank of the submodule in M of A-invariant
elements.

Proof. By Theorem 6.2 we have A” = 1. By Theorem 6.8 we have M & P, & P,, with
(torsion-free) A-invariant O-modules P; and P,, such that A7 acts as the identity
on P, and ®,(4) acts as zero on P,. The torsion subgroup of M/(4 — 1)M is the
direct sum of the torsion subgroups of P;/(4 — 1)P; and of P>/(4 — 1)P;. Let f(x) =
& = D/x=1)=14+x+x2+-+x" = € Z[x]. Then f(x)— ¢~ € (x — Z[x].
Suppose m € P and ¢ is a positive integer such that tm € (4 — 1)P,. Then f(A)m €
fAA4 - 1P, = (A"’_I ~ 1)P, = 0. Since P, is torsion-free, f(4)m = 0. Therefore,
¢"~'m € (4 — 1)P,. Thus, £~ kills the torsion subgroup of P;/(4 — 1)P,. Let O’ =
O[x]/®,(x). Then P; is an O'-module. Since £O is a prime ideal in O, @, (x+1) is an
Eisenstein polynomial over O, so @, (x) is irreducible, O’ is an integral domain, and
O'(x— 1O = O/¢O. Let O be the localization of O’ at the maximal ideal (x — 1)O’.
Since © has no non-zero infinitely #-divisible elements, and ¢ divides (x — 1)¢ =1/
in O', we have 5, ((x—1)0' )/ = 0. This implies that O is a principal ideal domain.
Since P, @O is a torsion-free O-module, it is free, say of rank d. The torsion subgroup
of P;/(4 — 1)P; is isomorphic to the torsion O-module P, ® (O'/(x — 1)O’), and we
have

P, ®(0'/(x — DO = P, @ (Of(x - 1)O) = (O)(x — 1N)D) = (0/tOY.

Thus ¢ kills the torsion subgroup of P,/(4—1)P,. We therefore have (a). Now suppose
r = 1. Then P1/(4 — 1)P, = 0. Further, the set of A-invariants of M is P;, so has
corank equal to the O-rank of P,, which is [0’ : Old = (£ — 1)d. O

7. Quasi-unipotent elements

Definition 7.1. In a ring, an element « is:
(a) nilpotent if some positive integral power of « is 0,
(b) unipotent if « — 1 is nilpotent,
(¢) quasi-unipotent if some positive integral power of « is unipotent.

Every unipotent element is quasi-unipotent. Every quasi-unipotent element is a unit.
If x and o are commuting elements of a ring, x is nilpotent, and & has finite multi-
plicative order, then « + x is quasi-unipotent.
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Theorem 7.2. Suppose O is a ring such that the natural map O — O ®z Q is
injective, and suppose k and n are positive integers. Suppose that for every rational
prime divisor £ of n, 1 + £O has no O-zero-divisors. Suppose o is a quasi-unipotent
element of O and (« — 1)F € nO. Then «fF*" s unipotent.

Proof. Let O’ = O N Q[a], a commutative subring of . Let J be the ideal in O’
consisting of all the nilpotent elements of ¢’. First we will show that for every rational
prime divisor £ of n, 1 + £(¢'/J) has no O'/J-zero-divisors. If not, then there would
exist elements x, y € O’ with y ¢ J and with (14 ¢x)y € J. Then (1+£x)°y* = 0 for
some positive integer s. Since (1 +¢x)° € 1+ /0, and 1 + /O has no O-zero-divisors,
we must have y* = 0, contradicting that y ¢ J. Therefore 1 + £(0'/J) has no O'/J-
zero-divisors. Theorem 7.2 follows by applying Theorem 4.4 to the ring O'/J and the
image of o in O'/J. O

Example 7.3. Let

" = (_i _;) e ((1) })+4Mz(2).

Then (a — I)? € 4M,(Z) and o is quasi-unipotent (since o
unipotent (its characteristic polynomial is (x + 1)?).

2 is unipotent) but « is not

Theorem 7.4. Suppose ¢ is a prime, m and r are positive integers, O is a commutative
ring, the natural map O — O Qg Q is injective, 1 +£0O has no O-zero-divisors, « € O
is a quasi-unipotent element, and

(o — Y= ¢ ymo),

Then there are rings A and O, in O and elements 6 € A and o, € O, such that
r—1

O=480,,a=08+a,, 8 is a unipotent element in A, and ®,(x,) is a nilpotent

element in O,.

Proof. The proof is similar to the proof of Theorem 5.1. By Theorem 7.2, af is
unipotent. Therefore, there is a positive integer s such that (af — 1)° = 0, and Q[a]
is a finite dimensional commutative (Q-algebra. Sending x to a gives a surjective Q-
algebra homomorphism

Pan)/Puxy = Q)" -1 - Qfal.

i=0
This defines idempotents (not necessarily non-zero) po,..., pr in Q[a] such that py +
o+ p,=1and pi®su(a)) =0fori=0,....,r. Let 6 =1— p,, 4 =060, O, = p, O,
and o, = p,a. The theorem will follow once we show 9, p, € O. Define f as in
the proof of Theorem 5.1; then ™ € /"O. Let J be the ideal of Q[a] consisting of
the nilpotent elements. Then pof € J, and by (1), pi(B— ¢ ) € Jfor 1 <i<r.
Let 4 be a positive integer such that pgf? = 0 and p;(f™ — ¢™ Y =0 for 1 <
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i < r. First suppose r = 1, and take y € O such that ™ = /™y Then pyy = 0
and pi(1 — 9y = 0. Therefore, po = (1 —y)Y' € ©, and p; = 1 — py € O. Now
suppose » > 1, and define B and C as in the proof of Theorem 5.1. Then B € /™ O
and B* = p,B! € /"Cp, + p,J. Write B* = /™4y with n € O. Then p,n = 1
and /™4 p,(C —n) € p,J, so £™4 p.(C —n) = 0 for some positive integer . Now
C—-n=0C+ p(C—1n),s0 (C—n) = 6C". Then p,C' = C'-6C' = C'—(C—n) € O.
Since £ and C are relatively prime, we will know p, (and therefore also d) is in O once
we know that #¢ p, € Z[«] C O for some non-negative integer d. This follows from the
fact that the resultant of the polynomials ®,-(x)* and H,:Ol Di(x) is a power of £. [

8. Semi-abelian varieties

Theorem 8.1. Suppose G is a commutative group scheme over a field, which is an
extension of an abelian variety by a torus, n, k, and s are positive integers, s and n are
relatively prime, o. € End(G)®z Z[1/s), « has finite multiplicative order, and (o — 1)
is 0 on the scheme-theoretic kernel of multiplication by n on G. Then of*" = 1. In
particular, if n ¢ N(k) then o = 1.

Proof. Let © = End(G) ®z Z[1/s]. Since (a — 1)* is 0 on the scheme-theoretic kernel
of multiplication by n, we have (a — 1)* € n@. Since End(G) is a finitely generated
free Z-module and s and » are relatively prime, O has no non-zero infinitely /-divisible
elements, if £ is a rational prime divisor of n. Thus, O, a, and r satisfy the hypotheses
of Theorem 4.4. O

Theorem 8.2. Suppose G is a commutative group scheme over a field, which is an
extension of an abelian variety by a torus, ¢ is a rational prime, m and r are positive
integers, a is an automorphism of G of finite multiplicative order, and (a—1y"¢=1¢"""
is 0 on the scheme-theoretic kernel of multiplication by (™. Then G is the direct sum
of a-invariant connected subschemes Gy and G, such that G, is the identity component
of ker(1 — o/’“') and G, is the identity component of ker(®(a)).

Proof. Let O = End(G) N Q[«]. Then O is a commutative subring of End(G), and
the natural map @ — O ®z Q is injective. There are no non-zero infinitely ¢-divisible
elements in End(G), and therefore in O, so 1+ /O has no O-zero-divisors by Lemma
4.3. Let p € O be the idempotent p, obtained in Theorem 5.1, Iet G; = (1 — p)(G) =
ker(p), and let G, = p(G) = ker(1 — p). Then o/ = 1, G, and G, are a-invariant
subschemes of G, G = G @ G, and G, and G; are connected. By Remark 5.3 and
the identity &,(x’ ') = ®p(x), we have p = 1 — £~ 1@, (a ) = 1 — £7 Dpr(a).
Therefore, /(1 — p) = &, («). Note also that 1 — x’"" divides ¢ — D4 (x). We then
have
1

fker(1 — o ) C L ker(¢ — Dpr(n)) = £ ker(£ p) C Gy = ker(p) Cker(1 —a” ),

tker(Ps(a)) = Cker(£(1 — p)) C Gr = ker(l — p) Cker(Pyr(a)).
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Therefore, ker(l — oc"_l)/Gl and ker(®,(x))/G, are killed by ¢, and so are finite.

r—1 . . .
Therefore, G, is the identity component of ker(1 —a ) and G, is the identity com-
ponent of ker(P,(a)). O

In the following result, 2 quasi-unipotent endomorphism means an endomorphism o
such that (¢* — 1)" = 0 for some positive integers s and ¢.

Theorem 8.3. Suppose G is a commutative group scheme over a field, which is an
extension of an abelian variety by a torus, £ is a rational prime, m and r are positive
integers, o is an automorphism of G which is a quasi-unipotent endomorphism, and
(o — 1Y"=1""" s 0 on the scheme-theoretic kernel of multiplication by ¢™. Then G
is the direct sum of a-invariant subschemes G| and G, with the properties that o
acts as a unipotent endomorphism on G, and ®;(a) acts as a nilpotent endomorphism
On Gz.

Proof. The proof parallels the proof of Theorem 8.2, with Theorem 7.4 invoked in
place of Theorem 5.1. O

9. f-adic representations and étale cohomology

Lemma 9.1. Suppose that b, k, m, and n are positive integers, m and n are relatively
prime, and for each prime divisor q of n we have a matrix A, € My(Z,) such that
the characteristic polynomials of the A, have coefficients in Z[1/m] independent of q,
and such that (4, — 1)F € nMy(Z,). Suppose ¢ is a prime divisor of n and v is a kth
root of n in an algebraic closure of Q. Then for every eigenvalue o of Az, v='(a—1)
satisfies a monic polynomial with coefficients in Z[1/m).

Proof. Let v;,...,v; denote the kth roots of n in an algebraic closure of Q. If a is
an eigenvalue of 4, then (« — 1)*/n is an eigenvalue of n='(4, — I)* € My(Z,). Thus
(x— 1)*/n, and therefore also the numbers vj”l(a — 1), satisfy monic polynomials with
coefficients in Z,. Let f(x) = det(4, — Ix) € Z[1/m][x], the characteristic polynomial
of 4;. Let

k k
hx) = n [ rQ1 + vjx) = [[ det(v; (s = I) = Ix) € Z[(mn)~"][x].

J=1 j=1

The roots of 4 are exactly the numbers vj_l(oc — 1) for eigenvalues o of 4, and for j €
{1,...,k}. Therefore the coefficients of A satisfy monic polynomials with coefficients
in Z,, but are also in Z[(mn)~!], so lie in Z[(mn)~']N Z, for every prime divisor
g of n. Since ﬂqln(Z[(mn)‘l] NZ,) = Z[1/m], we have h € Z[1/m][x]. Therefore,
v~!(a — 1) satisfies the monic polynomial # € Z[1/m][x], whenever o is an eigenvalue
of Ay and v is a kth root of n. [J
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Lemma 9.2 (Silverberg and Zarhin [15, Proposition 2.5]). Suppose ¢ is an invertible
linear operator on a finite-dimensional vector space V over a field of characteristic
zero. Then the multiplicative group generated by the eigenvalues of ¢ contains no
non-trivial roots of unity if and only if the smallest algebraic subgroup of GL(V)
containing ¢ is connected.

If F is a field, let F* denote a separable closure of F and let Gr denote Gal(F*/F).
We recall some definitions from Chapter I of [11] relating to /-adic representations.
Since these definitions make sense not only for number fields, but also for global
fields, we will allow such generality. See [18] for the theory of global
fields.

If £ is a prime number, an Z-adic representation of Gr is a continuous homomor-
phism p;: Gr — Aut(V,), where V, is a finite dimensional vector space over Q,. A
lattice of V; is a sub-Z,-module of ¥, which is free of finite rank and generates ¥,
over Q,.

Suppose from now on that F is a global field. Let £ denote the set of all fi-
nite places of F, ie., the set of all normalized discrete valuations of F. If v €
ZF, let k, denote the residue field of v, and let ¢, denote the cardinality of the fi-
nite field k,. If L is a finite Galois extension of F in F*, and w € ¥, is a place
of L extending v, let [, and D, denote, respectively, the inertia and decomposi-
tion groups of w. We have /,, C D, C Gal(L/F). The quotient group D,/I, is a fi-
nite cyclic group which can be canonically identified with Gal(x,/k,), and has a
canonical generator ¢, which corresponds to the Frobenius element (raising to the
g»th power) in Gal(x,/k,). If L is an arbitrary Galois extension of F in F*, let
21 denote the projective limit of the sets 2, where M ranges over the finite ex-
tensions of F in L. If w € X2, then D,, I,, and ¢, can be defined as
above.

If ps : Gr — Aut(Vy) is an /-adic representation and v € Xr, we say p, is unramified
at v if for every extension w of v to F*, p, is trivial on the inertia group [, of w. If p,
is unramified at v, then the restriction of p, to D,, factors through D,/I,, so p/(¢.)
is defined. We call p,(¢,) a Frobenius element associated to v, and denote it Fry,,.
The conjugacy class of Fry, in Aut(¥;) is independent of w, so the characteristic
polynomial P,, of Fr,, is well-defined and depends only on p, and » (see p. I-6 of
[11] and p. 108 of [17]).

Definition 9.3. If S is a set of prime numbers which does not contain char(F), we call
a system {p;: ¢ € S} of /-adic representations of Gr an almost integral compatible
system of {£-adic representations if for every pair of prime numbers ¢/ and ¢’ in §
there is a subset Sz, of Zr of density zero such that if v € 2r — Sy, and p is the
residue characteristic of v, then

(a) p, and p, are unramified at v,

(b) P,, and P, have coeflicients in Z[1/p], and

(c) Pv,f = Pv,t”-
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We remark that when F is a number field, every compatible system of integral /-
adic representations (1.2 of [11]) is an almost integral compatible system of /-adic
representations.

Theorem 9.4. Suppose k and n are positive integers, and F is a global field of char-
acteristic not dividing n. Suppose that S is a set of prime numbers which contains
all the prime divisors of n but does not contain char(F), and suppose {p;: £ € S} is
an almost integral compatible system of {-adic representations

pe 1 Gp — Aut(Vy).

Suppose that for every prime divisor q of n, T, is a Gp-invariant lattice in V, such
that for every ¢ € Gp,

(pg(0) — 1)* € n End(T,).

Suppose ¢ € S, let Z; be the Zariski closure of the image of Gg under p;, and let
@, denote the (finite) group of connected components of Z,. Then the exponent of
the group ®, divides R(n,k). In particular, if n ¢ N(k), then Z; is connected.

Proof. Let Z’ be a connected component of Z,. It follows easily from the Chebotarev
density theorem (Theorem 12 on p. 289 of [18]) that we can find a place v € Xr —
Uq|n ¢ Seq, of residue characteristic p not dividing », and a Frobenius element Frs,, €
Im(p,) associated to v, such that Frs, € Z'. Let ¢ = Frs,. Applying Lemma 9.1
to the Frobenius elements Fr,, for all prime divisors ¢ of n, we conclude that the
eigenvalues o of ¢ satisfy (¢ — 1)* € nZ[1/p], where Z denotes the ring of algebraic
integers. Let D = det(¢). Then D is the product of the eigenvalues of ¢, and D €
(1+ nl/kZ[l/p]) N Z[1/p]. 1t follows that D can be written as a fraction such that no
prime divisor of » divides the numerator or denominator. Let M be the multiplicative
group generated by the eigenvalues of ¢. Then M is a multiplicative subgroup of
the multiplicative semi-group 1 + n'*Z[1/p,1/D]. Applying Corollary 3.3 to O =
Z[1/p,1/D], we conclude that every root of unity A in M satisfies AR=%) = 1. Let
M’ be the multiplicative group generated by the eigenvalues of @f(»¥). Then M’ =
{BRK) . B € M}, so M’ contains no non-trivial roots of unity. By Lemma 9.2, the
smallest algebraic subgroup G of Aut(T,) containing @®%) is connected. Therefore,
P8 € G C Z?, the identity connected component of Z,. Since 2’ is a coset of z9,
we have 2’ = ¢Z?. Therefore, yR"¥) ¢ 20 for every y € 2. O

Suppose X is a smooth projective variety over a global field F. Let X = X xF*, the
variety obtained by extension of scalars. Suppose i and j are integers and 7 > 0. Then
Gr acts on H/(X,Z/mZ)(i) for every positive integer m not divisible by char(F ), and
therefore acts on the twisted étale cohomology groups H/(X,Z,)(i) for every prime
¢ # char(F). If £ is a prime and ¢ # char(F), let L, be the quotient of H/(X,Z,)(i)
by its torsion subgroup. Then L, is a Z,-lattice, and we can (non-canonically) identify
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Aut(L;) with GLy(Z,), where b is the jth Betti number of X (note that b is independent
of /). Let p, denote the associated /-adic representation (see Section 2 of [10]),

p¢ 2 Gr — GLy(Zy).

Corrollary 9.5. Suppose X is a smooth projective variety over a global field F. Sup-
pose i is an integer, n and k are positive integers, j is a non-negative integer, { is
a prime number, and char(F) does not divide n{. Suppose that for every ¢ € Gp,
(6 — VY kills H/(X,Z/nZ)(i). Let Z; be the Zariski closure of the image of Gr
under p;, and let &, denote the (finite) group of connected components of Z,. Then
the exponent of the group @, divides R(n,k). In particular, if n ¢ N(k), then Z; is
connected.

Proof. For every prime g # char(F) and positive integer r, there is a natural injection
of H/(X,Z,)(i)®Z/q"Z into H/(X,Z/q"Z)(i) (see Lemma 1.11 in Chapter V of [7]).
Suppose that o € Gr. Since (o — 1)* kills H/(X, Z/nZ)(i), we have that (p,(d)—1)* €
nMy(Z,) for every prime g # char(F) (where b is the jth Betti number of X). By [3,
4], the representations p, for ¢/ # char(F) form an almost integral compatible system
of /-adic representations. We now apply Theorem 9.4. O

Remark 9.6. Conjecturally, an analogue of Corollary 9.5 holds with the twisted étale
cohomology group replaced by the Z-form of a motive (as defined on p. 387 of [12]).
In this setting, the Weil conjecture on the independence of the characteristic polynomial
of Frobenius is an open question (see Conjecture 12.5 of [12]).

Remark 9.7. Corollary 9.5 remains true for varieties over finitely generated extensions
of Q. The proof is based on the Chebotarev density theorem for these extensions
{Theorem on p. 206 of [5]) and a variant of Theorem 9.4. This variant is obtained by
modifying the notion of almost integral compatible system of /-adic representations to
this setting (compare with pp. 108-109 of [17]).
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