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Abstract 

If CL is a root of unity in an integral domain 0 of characteristic zero, (a - l)k E no, and no 
prime divisor of n is a unit in 0, then a = 1 if n is a positive integer outside a finite set deter- 
mined by k. We prove this result and generalizations of it, and give results when n is an element 
of the finite exceptional set. We give applications to endomorphisms of semi-abelian varieties, 
compatible systems of d-adic representations, and the cohomology of projective varieties. 

1991 Math. Subj. Class.: 08A35, 1 lG10, 14F20 

1. Introduction 

A result of Serre (see [6, Lemma 4.7.11 and [9, Theorem on p. 17-191) says that if 

an automorphism of finite order of a semi-abelian variety induces the identity on the 

scheme-theoretic kernel of multiplication by n, then it is the identity if n > 3, and its 

square is the identity if n = 2. This result is useful in the study of moduli spaces of 
abelian varieties with full level n > 3 structure. Serre’s Lemma relies on the fact that 

if n 2 3 then every root of unity which is congruent to 1 modulo n is 1. This idea 

dates back to Minkowski (see [8]), who proved that an integral matrix of finite order, 

which is congruent to the identity modulo n, is the identity if n 2 3. 

In this paper we give generalizations and variations of the Serre-Minkowski results. 

For example (see Corollary 3.3), if k and n are positive integers, CI is a root of unity 
in an integral domain 0 of characteristic zero, (c( - l)R is divisible by n, and no 

prime divisor of n is a unit in 0, then CI = 1 if n is outside of a certain finite set of 

* Corresponding author. E-mail: silver @ mathohio-state-edu. 

0022-4049/96/$15.00 @ 1996 Elsevier Science B.V. All rights reserved 
SSDI 0022-4049(95)00113-l 



286 A. Silverberg, Yu. G. Zarhin I Journal of Pure and Applied Algebra I 11 (1996) 285-302 

prime powers determined by k. (The case k = 1 is the Serre-Minkowski case.) The 

proof relies on the arithmetic of cyclotomic integers. Although the ideas are simple, the 

result is useful and does not seem to have been noticed before. We give best-possible 

restrictions on t( when n is in the finite exceptional set. We have results for rings that 

are not necessarily integral domains (Section 4), and we have applications to matrix 

rings, eigenvalues, projective modules, and quasi-unipotent elements (see Sections 6 

and 7). We provide additional information when n is in the exceptional finite set (see 

Theorems 5.1, 6.8, 7.4, 8.2 and 8.3), and give examples which show that our results are 

sharp. In Section 8 we give applications to endomotphisms of semi-abelian varieties, 

which generalize Serre’s result. In Section 9 we give applications to compatible systems 

of /-adic representations and the cohomology of projective varieties. 

We believe these results have independent interest. We also expect that they will 

have additional applications. For some applications of special cases of these results to 

abelian varieties, see [13-l 51. 

A different variation on Minkowski’s theorem, due to Selberg, says that if K is a 

field of characteristic zero and H is a finitely generated subgroup of GL,(K), then H 
has a net (and therefore torsionfree) subgroup of finite index (see 17.7 on p. 119 of 

[l]). For other variations on Minkowski’s theorem see also Chapter 3 of [16], which 

deals with n an indecomposable element in a unique factorization domain or a prime 

ideal of a Dedekind ring in characteristic zero. 

Serre pointed out to us another generalization of Minkowski’s theorem (see p. 223 

of [2], for example). If G is a formal group over a discrete valuation ring 0 of residue 

characteristic p, and rc is a uniformizing parameter, then G(0) has trivial prime-to-p 

torsion, and has trivial p-torsion if ord,(p) < p - 1. Minkowski’s theorem follows 

by taking G to be the formal group of the general linear group. The result can also be 

applied to the formal group of an elliptic curve with good reduction. 

2. Notation 

All rings in this paper are rings with identity. However, we do not assume 0 # 1; 

that is, we do not exclude the zero ring. We denote the mth cyclotomic polynomial 

by @J,,,, and the integers and rational numbers by Z and Q, respectively. We use the 

convention that anything raised to the power 0 is 1. We write M,(O) for the ring of 

g x g matrices over 0, and write I, (or Z when it is unambiguous) for the g x g identity 

matrix. 

Definition 2.1. If k is a positive integer, define a finite set N(k) by 

N(k) = {prime powers em: 0 < m(7! - 1) I k}. 

Let R(k, 1) = 0; if n is a positive integer which is not in N(k), let R(k,n) = 1; if 

1 # n = em E N(k) with / a prime, let 

R(k, n) = PQ where r(k,n) = max{r E Zf : m(/ - l)L’-’ < k}. 
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For example, 

N(l) = {1,2), N(2) = {42,3,4), N(3) = {1,2,3,4,8}, 

N(4)= {1,2,3,4,5,8,9,16}; 

R(1,2) = 2, R(l,n)=l ifnz3, 

R(2,2) = 4, R(2,3) = 3, R(2,4) = 2, and R(2,n) = 1 if n > 5. 

3. Integral domains of characteristic zero 

Theorem 3.1. Suppose n, k, and M are positive integers, c3 is an integral domain 
of characteristic zero such that no rational prime which divides n is a unit in 0, 

b( I), . . . , b(k) are integers relatively prime to M, c1 E 0, olM = 1, and 

fi(c8-j) - 1) E nO. 
j=l 

Then gRckG) = 1. 

Proof. Without loss of generality we may assume M is the exact multiplicative order 

of c(. If M = 1, then a = 1 and there is nothing to show. Suppose M # 1 and let er 

be a prime power which exactly divides M, with r > 1. Let [ = a”ler. For all integers 

i,[‘-lE(a’-l)O,so 

fp - 1) E n0. 
j=l 

If i is a positive integer less than er and not divisible by 8, then the elements c - 1 

each generate the same ideal in Z[[] 5 0, and therefore, 

ek = (@&l))k = n (1 - i’)k E &%, 

iE(Z/PZ)X 

where cp is the Euler cp-function. Thus, &n-q(e’) E 0. 
We will now show that Z[l/n] n 0 = Z. Suppose b E Z[l/n] n 0. If fi 4 Z, then 

we can write /? = f where a, b E E and p is a prime dividing n but not dividing a. 

Since p does not divide a, we have k E Z + Z!; = Z + Zb/? C 0, contradicting the 

assumption that no rational prime which divides n is a unit in 0. Therefore, b E E. 

Therefore, eknO’(e’) E Z. Thus, n &‘) divides ek, so n is a prime power of the form 

P with 

k 2 mcp(f) = m(/ - l)L’-’ > m(/ - 1). 

Therefore, n E N(k). Further, n is a power of every prime which divides the order of 

tl, so the order of a is a prime power C, with m(e - l)er-’ < k. 0 
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Remark 3.2. By taking 0 to be the ring of integers in an algebraic closure of Q, 

fixing n = P E N(k), and letting u be a primitive R(k,n)th root of unity, we see that 

the upper bound of R(k,n) on the order of a in Theorem 3.1 is sharp. 

The most interesting case of Theorem 3.1 is when b( 1) = . . . = b(k) = 1, i.e., 

when (a - l)k E nC?. For ease of exposition and notation, we will restrict ourselves to 

that case from now on, although our results could all be stated in the generality of 

Theorem 3.1. 

Corrollary 3.3. Suppose n and k are positive integers, 0 is an integral domain of 

characteristic zero such that no rational prime which divides n is a unit in 0, a E 0, 

CI has jinite multiplicative order, and (a - l)k E n0. Then cxRckP) = 1; in particular, 
CC= 1 ifn$N(k). 

4. Rings in characteristic zero 

Remark 4.1. If 0 is a non-zero ring, then the natural map 0 + 0 @z Q is injective 

if and only if 

l the natural map Z -+ 0 is injective, and 

l no non-zero rational integer is a zero-divisor in 0. 

Definition 4.2. If A is a subset of a ring 0, we say A has no O-zero divisors if there 

do not exist x E A and 0 # y E 0 such that xy = 0 = yx. In particular, if A has no 

O-zero-divisors then 0 $! A. 

Lemma 4.3. Suppose 0 is a non-zero ring and 8 is a rational prime. Then: 

(a) rf 1 + ~‘0 has no O-zero-divisors, then L is not a unit in 0. 
(b) If 0 has no non-zero infinitely d-divisible elements, then 1 + e0 has no 0 

zero-divisors. 

Proof. (a) If e were a unit in 0, then we would have 0 E 1 + 60, contradicting the 

assumption that 1 + /0 has no O-zero-divisors. 

(b) If (1 + ex)y = 0 with x, y E 0 and y # 0, then y = -.!xy = e2x2y = 
. . . = (- 1 )‘?x’y for all positive integers i, contradicting the assumption that 0 has no 

non-zero infinitely e-divisible elements. 0 

Theorem 4.4. Suppose 0 is a ring such that the natural map 0 + 0 @Z Q is 
injective, and suppose k and n are positive integers. Suppose that for every rational 
prime divisor e of n, 1 + e0 has no O-zero-divisors. Suppose c1 is an element of 0 
of jinite multiplicative order such that (LY - l)k E nO. Then mRctn) = 1. 

Proof. Since u has finite multiplicative order and the natural map 0 -+ 0 @‘H Q is 

injective, Q[cc] is a finite dimensional semisimple commutative Q-algebra and therefore 
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is a direct sum of number fields @f=, Ki. Let 0’ = 0 fl Q[a]. Then 0’ @ Q = Q[a] = 

@i=, Ki. Let pi be th e projection of Q[a] onto the ith factor, and let C’i = ni(C”). 

Then Ki = C’i @ Q, and 0’ is a subring of &, Oi. 

We will show that no rational prime divisor of n is a unit in any of the integral 

domains Qi. If this were not the case, then some prime divisor 8 of n would be 

a unit in some c?i, say 01. An inverse of e in 01 is of the form rci(x) for some 

x E 0’ C 0. We therefore have 1 - 8x E @=, Oi. Since 0’ C 0’ @ Q = @=, Ki, we 
have 0’ n KI # (0). Let y be a non-zero element of 0’ f’ KI. Then (1 - /x)y = 0, 

contradicting the assumption that 1 + ~?c3 has no 0zero-divisors. Therefore no rational 

prime divisor of n is a unit in any C’i. 

Let c(, = n;(x) E Oi. Then CI = C:=, ai, and Cliaj = 0 if i # j. Since (CI - l)k E nO, 
we have (pi - l)k E nOi for every i. Since CI has finite multiplicative order, so do 

all the ai. By Theorem 3.1, cli R(k’n) is the identity in the ring C’i, for every i. But 
,#(k,“) = <c;=, ,I)R(k~n) = c;=, @k,n) = 1. q 

5. Extremal exceptional cases 

We provide additional information in the extremal exceptional case k = mcp(/‘). This 

case includes all the cases with k = 1 or 2 and 1 # n E N(k). The direct summands 

in the following theorem are not necessarily non-zero. 

Theorem 5.1. Suppose e is a prime, m and r are positive integers, c? is a commutative 

ring, the natural map c3 -+ 0 8~ Q! is injective, 1 + e0 has no Gzero-divisors, a E 0 
is an element of jinite multiplicative order, and 

Then 8 = 1 and there are rings A and 0,. in 0 and elements 6 E A and a,. E 0, 
such that c3 = A @ C?,, a = 6 + ar, 6 is an er-’ th root of unity in A, and a, satisfies 

the C’th cyclotomic polynomial in 0,. 

Proof. If G is a finite abelian group, let G be the group of characters of G. Let 6! 

denote an algebraic closure of Q. Then the group ring @G] is the direct sum of the 

one-dimensional subspaces e,&G] = ae,, where for x E G;, the idempotent ex is 

defined by 

e, = &~~-‘(o)o E 6[G]. 
UEG 

From now on take G to be a cyclic group of order P’. Then 

Q[G] Z Q[x]/(xe’ - 1). 

For 0 < i I: r, let Xi = {x E G: x surjects onto the group of 8th roots of unity} and 

let Pi = &x,e,. Then Xi is stable under Gal(o/Q), Pi E Q[G], Pi is an idempotent, 
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Q[G] E @L=cPiQ[G], and P@[G] g Q[x]/@~~(x) g Q(ci) where & is a primitive 

8th root of unity. For x E 6, the values of x on G are Pth roots of unity, so in 

particular are algebraic integers. Viewing Pi as a polynomial Pi(x) E Q[x] (modulo 

@Jam), the definitions of ex and Pi show that Pi(x) E /+Z[x]. For 1 < i 5 r we 

have 

l-I (1 - 6) = (NQ(i,,,Q( 1 - [i))l’_’ = e”‘_‘, (1) 

where Nocc,)/o denotes the norm from a(&) to Q. 

Let n = P and k = m(8 - l)Pl. Then R(k,n) = P, and Theorem 4.4 implies that 

cler = 1. Sending x to u gives a surjective Q-algebra homomorphism 

(Q[G] e) Q [x]/(xe’ - 1) -+ Q[Qz]. 

For 0 5 i 5 r, let pi be the image 

make the following identifications: 

Of Pi in Q[fX], i.e., pi = Pi(a) E t-‘h[U]. We can 

@ Q(L 1. 

PI #O 

We will use the hypotheses on CI to show that p,. E 0. Let 

/I= n (l-&j). 

jE(iZ/PZ)x 

By OUT hypotheses, /?” E emu. We have pop = 0, and (1) implies that pip = /“r’-‘pi 

for 1 5 i < r. Therefore, 

p = efeLpi and pm = k/““-‘pi. 

i=l i=l 

If r = 1, then /?“’ = 4”pl E tmO, so p1 E 0 by the injectivity of the natural map 

0+0&O. Supposer > 1. Let 

r-l r-1 

B = /j”n(p” _ ye’-‘), c = n(l - pv-‘-l)). 

i=l i=l 

Then B E ~9~0, and C is a non-zero integer which is not divisible by the prime /. 

Since pop = 0 and pi(p” - Per-‘) = 0, we easily see that B = tm’Cp,. Therefore, 

tm’Cp, E tmrO. Since the natural map 0 -+ 0 8~ Q is injective, Cp, E 0. But 

f’pr E Z[a] & (3. Since / and C are relatively prime, we have pr E 0. 

Let 6 = (1 - p,)a. Then de’-’ = 1 - pr and p,@!,(a) = 0. Letting A = (1 - p,)O, 

0, = p&‘, and a7 = pra, we obtain the desired result. Cl 

Remark 5.2. Retaining the notation of Theorem 5.1 and its proof, let 6’ = 6 + pr E 0 

and yr = (1 -~,)+a, E 0. Then GI = 6’7, = y,.S’, (8)e’-’ = 1, and (yr- l)@&yr) = 0. 

(Of course, this gives no additional information in the case r = 1.) 
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Remark 5.3. A computation shows that a formula for the idempotents Pi(x) E /CrZ[x] 

is given by 

(‘-1 CPV’) if 8 ) j, 

Pi(x) = d-‘CajX’ where aj = -/‘-’ if P t j but P’ ) j, 

j=O 0 otherwise. 

Example 5.4. The idempotents ~0,. . . , pr-l in the proof of Theorem 5.1 are not nec- 

essarily elements of 0. For example, let 0 be the commutative ring of integer matrices 

and let CI = m=l,r=2,ande=2.Then 

a2=1 and (c~-l)~= 

However, 

1 
po=4(1+G(+N*+x3)=z 1 1 l l1 @(3, 

( ) 

and 

1 
p1 = ;(l -or+a2-a3)=; 

( > 
_; -; $.o. 

Here, p2 = 0. 

6. Matrix rings 

Lemma 6.1. Suppose 0 is a commutative ring, the natural map 13 + 0 8~ Q is 
injective, e is a rational prime, 1 + e0 has no O-zero-divisors, and g is a positive 
integer. Then 1 + ei$(O) has no M,(O)-zero-divisors. 

Proof. Let CJd be the localization of c? with respect to the multiplicative semigroup 

1 + e0. Our assumptions on 0 and k’ imply that the natural map 0 ---f c3d is injective. 

Assume that there are matrices A, B E M,(O) such that (1 + eA)B = 0. We will show 

B = 0. The determinant of 1 +e,4 is in 1+6’0, and therefore is a unit in 0~. Therefore 

1 + eA has an inverse, call it Y, in M,(Oe). Then B = Y(l + eA)B = 0. We have 

shown that 1 + MJO) has no M,(C?)-zero-divisors. 0 

Theorem 6.2. Suppose n, k, and g are positive integers, 0 is a ring such that the 

natural map 0 -+ 0 8~ Q is injective, and either 
(a) for every rational prime divisor e of n, 0 has no non-zero injnitely /-divisible 

elements, or 
(b) 13 is commutative and for every rational prime divisor e of n, 1 + LO has no 

0-zero-divisors. 
ZfA E M,(O) is a matrix offinite multiplicative order such that (A-Z)k E m&(0), 

then ARck,“) = I. 
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Proof. Let / be a prime divisor of 12. In case (a), since 0 has no non-zero infinitely 

e-divisible elements, neither does n/r,(O). By Lemmas 4.3 and 6.1, in both cases 1 + 

{M,(O) has no M,(O)-zero-divisors. Theorem 6.2 now follows from Theorem 4.4. 0 

In Theorem 6.3 below, the congruence condition on the g x g matrix A is that for 

some t E { 1,. . , k}, A modulo 2k can be viewed as a t x t matrix 

I a1 * 

( 4 . . 

0 I,, 

whose entries btj are rectangular matrices such that for i = 1,. . . , t, the entry bii is a 

square identity matrix (not necessarily all of the same size), and such that for i 2 j, 
b, is a rectangular zero matrix. 

Theorem 6.3. Suppose k and g are positive integers, k 2 2, 0 is a commutative ring, 

and the natural map 0 -+ 0 CXQ Q is injective. Suppose that 1 i-20 has no O-zero- 
divisors. Suppose A E M,(O) is a matrix of finite multiplicative order, and suppose 
that A module 2kMJ0) has main diagonal consisting of at most k square blocks of 

identity matrices and is zero below the diagonal blocks. Then A = I. 

Proof. The hypotheses imply that (I-A)k E 2kMe(0). Since R(k,2k) = 2, by Theorem 

6.2 we then have A2 = I. This implies (for example, by induction on k) that (I - A)k = 
2k-‘(I -A). Therefore 2k-1(I -A) E 2kM,(0), which implies that I -A E 2MJO). 

Therefore A = I + 2B where B E M,(O) and where B modulo 2M,(O) consists of 

at most k square blocks of zero matrices on the main diagonal (corresponding to the 

blocks of identity matrices in A modulo 2kMJ0)) and is zero below the diagonal 

blocks. Then 0 = I - A2 = (I + A)(I -A) = 2(I + B)(I -A), so 0 = (I + B)(I - A). 

Taking the determinant we have det(I + B) E 1 + 20, so det(I + B) is a unit in the 

localization of 0 with respect to 1 + 20. Thus the map defined by multiplication by 

I + B is injective, so I -A = 0. q 

Theorem 6.4. Suppose n and g are positive integers, n 2 4, 0 is a ring such that the 
natural map c? -+ 0 8~ Q is injective, and either 

(a) for every rational prime divisor 8 of n, CJ has no non-zero infinitely /-divisible 
elements, or 

(b) 0 is commutative and for every rational prime divisor L of n, 1 + /O has no 
Dzero-divisors. 

If A E M,(U) is a matrix of finite multiplicative order, 0 5 a 5 g, and b is an 
a x (g - a) matrix over 0 such that 

AE + nMs(W, 

then A = I. 
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Proof. The hypotheses imply that (A - 1)’ E nM,(O). By Theorem 6.2, we then have 

A = I if n 2 5. Suppose n = 4. Under the hypotheses in case (b), Theorem 6.4 follows 

by taking k = 2 in Theorem 6.3. Now assume we are under the hypotheses in case 

(a). Then Theorem 6.2 implies that A2 = I. Write 

AZ 1‘?+4cl 

( 

P 

4Y I,-, + 46 > 

with matrices tl, B, y, and 6 of appropriate sizes. Since A2 = I, we have 0 = 2a+4tx2 + 

fly, 0 = j3 + 2c$ + 2p6, 0 = y + 2ya + 26y, and 0 = r/3 + 26 + 4~5~. By our assumptions, 

0, and therefore also M,(0), has no non-zero infinitely 2-divisible elements. Therefore 

we have directly that j3 = 0 and y = 0, from the second and third equations. Then the 

first and fourth equations similarly imply that CL = 0 and 6 = 0, so A = I. 0 

Example 6.5. (a) Let 

A= 

Then 

AE 

and A has multiplicative order 

(b) Let 

A= 

Then 

AE ( ) :, ; +2MzV> 

and A has multiplicative order 

Lemma 6.6. Suppose 0 and d are integral domains of characteristic zero, 0 is a 
subring of 6, and every element of d is integral over 0. If v E c) and v is not a 
unit in 0, then v is not a unit in 8. 

Proof. Suppose v-’ E 6. Then v-’ is integral over 0, so there exist m E Zi and 

a0,..-, a,_ 1 E 0 such that V-“’ + a,_ 1 vlPrn +. . . + alv-’ + a0 = 0. Multiplying by vm-’ 

and rearranging the equation gives v-’ = -a,_1 - am-2v - . . . - aov"-' . Therefore 

v-’ E 0, contradicting the assumption. 0 

Theorem 6.7. Suppose 0 is an integral domain of characteristic zero, n and k are 
positive integers such that no rational prime which divides n is a unit in 0, A E M,(O) 
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satisJies (A - Z)k E nMe(O), and A is an eigenvalue of A which is a root of unity. 
Then 2R(k,n) = 1. 

Proof. View the eigenvalues of A as lying in the integral closure d of 0 in an 

algebraically closed field containing 0. By Lemma 6.6, no rational prime which divides 

n is a unit in d. Write(A - Z)k = nB with B E M,(O). Then we have (2 - l)k = n,u 

where ~1 is an eigenvalue of B, so u E 6. Applying Corollary 3.3 to the ring d and 

the element 2 shows that J. is an R(k,n)th root of unity. 0 

Theorem 6.8. Suppose t! is a prime, B is a ring such that the natural map B -+ B&Z&D 
is injective, and either 

(a) B has no non-zero infinitely e-divisible elements, or 
(b) B is commutative and 1 + c!B has no B-zero-divisors. 

Suppose m and r are positive integers, P is a jinitely generated projective right B- 
module, and u is an automorphism of P of finite order such that 

(a - l)m(e-‘)e’-’ E Y’Ends(P). 

Then P is a direct sum of a-invariant right submodules PI and P2 of P such that 
&’ acts as the identity on PI and @(‘(LX) acts as the zero map on P2. 

Proof. Since P is a finitely generated projective right B-module, it is a direct summand 

of a free right B-module of finite rank, say Be = P@Q. Therefore we can view the ring 

EndB(P) of right B-module endomorphisms of P as contained in the ring M,(B), with 

End,(P) = {y E M,(B) : y(P) C P,y(Q) = 0). Write lp, IQ, and I for the identity 

elements in Ends(P), EndB(Q), and M,(B), respectively. Then Z = 1~ + 1~. Since 

the natural map M,(B) -+ M,(B) @z CI is injective, so is the natural map EndB(P) + 

Ends(P)@Q. In case (a), M,(B), and therefore EndB(P), has no non-zero infinitely e- 

divisible elements, and by Lemma 4.3, lp+eEnds(P) has no Ends(P)-zero-divisors. In 

case (b), 1+/M,(B) has no M,(B)-zero-divisors by Lemma 6.1. If there were elements 

x, y E Ende(P) such that (1~ +kc)y = 0 = y( lp +/x), then (Z+ex)y = 0 = y(Z+ex) 

in M,(B), since 1Qz = 0 = zl~ for every z E EndB(P). Therefore lp + e Ends(P) has 

no End&P)-zero-divisors. Let 0’ = EndB(P) r7 a[~]. Then 0’ is a commutative ring 

such that the natural map 0’ + 0’ @E 62 is injective, 1 + e0’ has no O’-zero-divisors, 

and (a - l)m(e-‘)c’-’ E emO’. Theorem 5.1 provides an idempotent pr E 0 such 

that, letting 6 = (1 - pr)~ E 0’ and CI, = pra E 0, we have $‘-’ = 1 - pr and 

~,@(~(a) = 0. Let PI = S(P) and P2 = a,(P). Then P = PI @ P2, and PI and P2 

satisfy the required conditions. 0 

Remark 6.9. A ring B satisfies (a) or (b) of Theorem 6.8 if and only if its opposite 

ring does. Therefore Theorem 6.8 also holds if the word “right” is everywhere replaced 

by “left”. 



A. Silverberg, Yu. G. Zarhinl Journal of Pure and Applied Algebra 111 (1996) 285-302 295 

Theorem 6.10. Suppose G is a prime, m and Y are positive integers, 0 is an integral 
domain of characteristic zero with no non-zero infinitely /-divisible elements, !0 is a 
maximal ideal of 0, M is a free 0module of finite rank, and A is an endomorphism 

of M of finite multiplicative order such that (A - l)m(“-‘)e’-’ E Y’End(M). 
(a) If r > 1, then the torsion subgroup of M/(A - l)M is killed by F’. 

(b) If r = 1, then the torsion subgroup of MJ(A - l)M is a vector space over oJe0 

of dimension c/(e - 1) where c is the corank of the submodule in M of A-invariant 
elements. 

Proof. By Theorem 6.2 we have A ‘” = 1 By Theorem 6.8 we have M %’ P1 @Pz, with . 

(torsion-free) A-invariant O-modules PI and P2, such that Aer’-’ acts as the identity 

on P1 and @er(A) acts as zero on P2. The torsion subgroup of M/(A - l)M is the 

direct sum of the torsion subgroups of P,/(A - 1)Pi and of Pz/(A - 1)Px. Let f(x) = 
(x’7-’ -1)/(x-l)= l+x+x2+...+xe~-‘-’ E Z[x]. Then f(x) - F’ E (x - l)Z[x]. 

Suppose m E P1 and t is a positive integer such that tm E (A - 1)Pi. Then f (A)tm E 
f (A)(A - 1 )P1 = (Aer-’ - 1)Pi = 0. Since PI is torsion-free, f (A)m = 0. Therefore, 

er-‘rn E (A - 1 )Pl . Thus, er-’ kills the torsion subgroup of Pl/(A - 1 )P1 . Let 0’ = 

~[x]/@~~(x). Then P2 is an U-module. Since eCJ is a prime ideal in 0, @er(x+ 1) is an 

Eisenstein polynomial over 0, so @e,(x) is irreducible, 0’ is an integral domain, and 

c?‘/(x - 1)CJ’ g O/et?. Let 8 be the localization of c3’ at the maximal ideal (x - 1 )0’. 

Since 0 has no non-zero infinitely e-divisible elements, and 8 divides (x - l)(c-l)e’-’ 

in 0, we have njll((x - 1)CJ’)j = 0. This implies that 8 is a principal ideal domain. 

Since PZ @ 8 is a torsion-free C?-module, it is free, say of rank d. The torsion subgroup 

of Pz/(A - l)P2 is isomorphic to the torsion O-module PZ @ (0/(x - l)O’), and we 

have 

P2 @ (0/(x - 1)O’) 2 P2 @ (B/(x - 1)8) = (8/(x - 1)8)d = (o/eo)d. 

Thus C! kills the torsion subgroup of Pz/(A - 1)Pz. We therefore have (a). Now suppose 

r = 1. Then Pl/(A - 1)Pi = 0. Further, the set of A-invariants of M is PI, so has 

corank equal to the o-rank of P2, which is [CY : Old = (8 - 1)d. q 

7. Quasi-unipotent elements 

Definition 7.1. In a ring, an element c1 is: 

(a) nilpotent if some positive integral power of tl is 0, 

(b) unipotent if CI - 1 is nilpotent, 

(c) quasi-unipotent if some positive integral power of c( is unipotent. 

Every unipotent element is quasi-unipotent. Every quasi-unipotent element is a unit. 

If x and CI are commuting elements of a ring, x is nilpotent, and a has finite multi- 

plicative order, then CI +x is quasi-unipotent. 
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Theorem 7.2. Suppose 0 is a ring such that the natural map 0 + 0 & 62 is 

injective, and suppose k and n are positive integers. Suppose that for every rational 

prime divisor 8 of n, 1 + LO has no O-zero-divisors. Suppose CI is a quasi-unipotent 

element of c? and (CI - l)k E n0. Then rxRck,“) is unipotent. 

Proof. Let 0’ = 0 n Q[a], a commutative subring of 0. Let J be the ideal in 0’ 

consisting of all the nilpotent elements of 0’. First we will show that for every rational 

prime divisor / of n, 1 + /(0/J) has no U/J-zero-divisors. If not, then there would 

exist elements X, y E 0’ with y $! J and with (1 + ex)y E J. Then (1 + ex>syS = 0 for 

some positive integer s. Since (1 + ex)s E 1 + /0, and 1 + 80 has no O-zero-divisors, 

we must have ys = 0, contradicting that y 6 J. Therefore 1 + /(U/J) has no 0/J- 
zero-divisors. Theorem 7.2 follows by applying Theorem 4.4 to the ring 0//J and the 

image of LX in 0/J. 0 

Example 7.3. Let 

Then (a - Z)2 E 4Mz(Z) and CI is quasi-unipotent (since ~1~ is unipotent) but c1 is not 

unipotent (its characteristic polynomial is (x + 1)2). 

Theorem 7.4. Suppose e is a prime, m and r are positive integers, 0 is a commutative 

ring, the natural map 0 + c3 @H Q is injective, 1 + to has no Dzero-divisors, CI E 0 
is a quasi-unipotent element, and 

Then there are rings A and C$ in 0 and elements 6 E A and CI, E 0r such that 
0 = A @ 0,, M. = 6 + cl,., c?“~-’ is a unipotent element in A, and @lr(ar) is a nilpotent 

element in 0,. 

Proof. The proof is similar to the proof of Theorem 5.1. By Theorem 7.2, ~8’ is 

unipotent. Therefore, there is a positive integer s such that (&’ - 1)s = 0, and Q[a] 

is a finite dimensional commutative Q-algebra. Sending x to u gives a smjective Q- 

algebra homomorphism 

@a[x]/@r~(X)” 2 a[x]/(xe’ - l)s + Q[cl]. 
i=O 

This defines idempotents (not necessarily non-zero) pa,. . . , pr in Q[cY.] such that p. + 

... + pr = 1 and pi@dt(N)s = 0 for i = O,..., r. Let 6 = 1 - pr, A = 60, 0, = pro, 
and c(, = pra. The theorem will follow once we show 6, p,. E 0. Define fi as in 

the proof of Theorem 5.1; then /?” E P0. Let J be the ideal of Q[a] consisting of 

the nilpotent elements. Then PO/I E J, and by (l), p&3 - et’-‘) E J for 1 5 i 5 r. 
Let A be a positive integer such that popA = 0 and pi(fi” - Pe’-‘)A = 0 for 1 < 
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i < r. First suppose r = 1, and take y E 0 such that p”4 = emAy. Then pay = 0 

and pl( 1 - y)” = 0. Therefore, PO = (1 - y)A E 0, and p1 = 1 - p. E 0. Now 

suppose r > 1, and define B and C as in the proof of Theorem 5.1. Then B E emrO 
and BA = p,BA E PrACp, + prJ, Write BA = PrAn with n E 0. Then pm = u] 
and PrA p,(C - q) E prJ, so PrAt pr(C - n)’ = 0 for some positive integer t. Now 

C-q = 6C+p,(C--n), so (C-n)’ = IX’. Then prCt = C’-6C’ = C’-(C-v])’ E 0. 
Since e and C are relatively prime, we will know pr (and therefore also S) is in 0 once 

we know that edp,. E Z[cc] C 0 for some non-negative integer d. This follows from the 

fact that the resultant of the polynomials @e7(x)” and nL:i QdI(nr is a power of 8. 0 

8. Semi-abelian varieties 

Theorem 8.1. Suppose G is a commutative group scheme over a field, which is an 
extension of an abelian variety by a torus, n, k, and s are positive integers, s and n are 
relatively prime, a E End(G) KIZ Z[l/ 1, s M. as m e multiplicative order, and (a - l)k h ji ‘t 
is 0 on the scheme-theoretic kernel of multiplication by n on G. Then uRck,“) = 1. In 
particular, if n $! N(k) then a = 1. 

Proof. Let 0 = End(G) 8~ Z[ l/s]. Since (a - l)k is 0 on the scheme-theoretic kernel 

of multiplication by n, we have (a - l)k E nO. Since End(G) is a finitely generated 

free Z-module and s and n are relatively prime, 0 has no non-zero infinitely e-divisible 

elements, if C is a rational prime divisor of n. Thus, 0, LX, and n satisfy the hypotheses 

of Theorem 4.4. 0 

Theorem 8.2. Suppose G is a commutative group scheme over a field, which is an 
extension of an abelian variety by a torus, 8 is a rational prime, m and r are positive 
integers, a is an automorphism of G of jinite multiplicative order, and (a- l)m(c-‘)e’-’ 

is 0 on the scheme-theoretic kernel of multiplication by em. Then G is the direct sum 
of a-invariant connected subschemes G1 and G2 such that G1 is the identity component 
of ker( 1 - c&-’ ) and G 2 is the identity component of ker(@l,(a)). 

Proof. Let 0 = End(G) n Q[a]. Then 0 is a commutative subring of End(G), and 

the natural map 0 + 0 @z Q is injective. There are no non-zero infinitely e-divisible 

elements in End(G), and therefore in 0, so 1 + 80 has no U-zero-divisors by Lemma 

4.3. Let p E 0 be the idempotent pr obtained in Theorem 5.1, let Gr = (1 - p)(G) = 

ker( p), and let GZ = p(G) = ker( 1 - p). Then ~8’ = 1, Gt and Gz are a-invariant 

subschemes of G, G = G1 @ G2, and Gr and G2 are connected. By Remark 5.3 and 

the identity Q&8-‘) = @d’(x), we have p = 1 - 8-‘@~(c&-‘) = 1 - e-‘@~(a). 

Therefore, e( 1 - p) = @er(a). Note also that 1 - .xe’-’ divides L - Q&x). We then 

have 

8 ker( 1 - c&-’ ) C L ker(e - @P(E)) = e ker(lp) c Gr = ker(p) c ker( 1 - I#-’ ), 

e ker(@cr(a)) = / ker(/( 1 - p)) C G2 = ker( 1 - p) C ker(@d(a)). 
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Therefore, ker( 1 - &’ )/Cl and ker(@L,(cl))/Gz are killed by /, and so are finite. 

Therefore, Gl is the identity component of ker( 1 - ae”-’ ) and Gz is the identity com- 

ponent of ker(@e,(cr)). 0 

In the following result, a quasi-unipotent endomorphism means an endomorphism o! 

such that (c? - 1)’ = 0 for some positive integers s and t. 

Theorem 8.3. Suppose G is a commutative group scheme over a jield, which is an 
extension of an abelian variety by a torus, L is a rational prime, m and r are positive 

integers, CI is an automorphism of G which is a quasi-unipotent endomorphism, and 
(U _ 1)4”-W - r ’ is 0 on the scheme-theoretic kernel of multiplication by 8”‘. Then G 
is the direct sum of a-invariant subschemes G1 and G2 with the properties that ~8’~’ 
acts as a unipotent endomorphism on GI and @e,(g) acts as a nilpotent endomorphism 

on Gz. 

Proof. The proof parallels the proof of Theorem 8.2, with Theorem 7.4 invoked in 

place of Theorem 5.1. 0 

9. &adic representations and &ale cohomology 

Lemma 9.1. Suppose that b, k, m, and n are positive integers, m and n are relatively 
prime, and for each prime divisor q of n we have a matrix A, E Mt,(Z,) such that 
the characteristic polynomials of the A, have coeficients in Z[l/m] independent of q, 
and such that (A4 - I)k E nMb(&). Suppose / is a prime divisor of n and v is a kth 
root of n in an algebraic closure of Qe. Then for every eigenvalue CI of Al, v-l(a - 1) 

satisfies a manic polynomial with coejicients in E[l/m]. 

Proof. Let VI,..., Vk denote the kth roots of n in an algebraic closure of Qt. If c1 is 

an eigenvalue of Al, then (0~ - l)k/n is an eigenvalue of n-'(Al - Z)k E Mb(&). Thus 

(a - l)k/n, and therefore also the numbers VT’ (a - 1 ), satisfy manic polynomials with 

coefficients in Zf. Let f(x) = det(Ad - Ix) E Z[l/m][x], the characteristic polynomial 

of Al. Let 

h(x) = n-b fif(l + vjx) = fidet(v;‘(Al -I) - IX) E Z[(mn)-l][x]. 
j=l j=l 

The roots of h are exactly the numbers v~‘(u - 1) for eigenvalues a of A( and for j E 

{l,..., k}. Therefore the coefficients of h satisfy manic polynomials with coefficients 

in Hd, but are also in Z![(mn)-‘1, so lie in E[(mn)-‘1 II Z, for every prime divisor 

q of n. Since &,(Z[(mn)-‘1 n 72,) = Z[l/m], we have h E Z[l/m][x]. Therefore, 

v-‘(a - 1) satisfies the manic polynomial h E Z[l/m][x], whenever a is an eigenvalue 

of At and v is a kth root of n. 0 



A. Silverberg, Yu. G. Zarhinl Journal of Pure and Applied Algebra 111 (1996) 285-302 299 

Lemma 9.2 (Silverberg and Zarhin [15, Proposition 2.51). Suppose cp is an invertible 
linear operator on a jinite-dimensional vector space V over a field of characteristic 

zero. Then the multiplicative group generated by the eigenvalues of cp contains no 
non-trivial roots of unity if and only tf the smallest algebraic subgroup of GL(V) 
containing cp is connected. 

If F is a field, let Fs denote a separable closure of F and let GF denote Gal(FS/F). 
We recall some definitions from Chapter I of [l l] relating to /-adic representations. 

Since these definitions make sense not only for number fields, but also for global 

fields, we will allow such generality. See [ 181 for the theory of global 

fields. 

If e is a prime number, an e-adic representation of G,Q is a continuous homomor- 

phism pe : GF + Aut(Vl)), where Vr is a finite dimensional vector space over Qt. A 

lattice of Ve is a sub-&module of V, which is free of finite rank and generates Vt 
over Qe. 

Suppose from now on that F is a global field. Let CF denote the set of all fi- 

nite places of F, i.e., the set of all normalized discrete valuations of F. If u E 

CF, let K, denote the residue field of u, and let qO denote the cardinal&y of the fi- 

nite field K,. If L is a finite Galois extension of F in FS, and w E C; is a place 

of L extending v, let I, and D, denote, respectively, the inertia and decomposi- 

tion groups of w. We have I, 50, C Gal(L/F). The quotient group D,/I, is a fi- 

nite cyclic group which can be canonically identified with Gal(K,,&), and has a 

canonical generator & which corresponds to the Frobenius element (raising to the 

q,th power) in Gal(rc,/rc,). If L is an arbitrary Galois extension of F in F’, let 

CL denote the projective limit of the sets C M where M ranges over the finite ex- 

tensions of F in L. If w E CL, then D,, I,,,, and &, can be defined as 

above. 

If pe : GF -+ Aut( Vf) is an d-adic representation and v E CF, we say pe is unramtjied 
at u if for every extension w of u to FS, pe is trivial on the inertia group 1, of w. If pi 

is unramified at u, then the restriction of pe to D, factors through D,/I,,,, so pe(&,) 

is defined. We call pe(&) a Frobenius element associated to v, and denote it Frt,,. 
The conjugacy class of Fre,w in Aut( Ve) is independent of w, so the characteristic 

polynomial P,,J of Frd,w is well-defined and depends only on pe and v (see p. I-6 of 

[ll] and p. 108 of [17]). 

Definition 9.3. If S is a set of prime numbers which does not contain char(F), we call 

a system {pe : e E S} of /-adic representations of G,Q an almost integral compatible 
system of /-adie representations if for every pair of prime numbers / and /’ in S 

there is a subset Se,0 of EF of density zero such that if v E Z.Q - Se,et, and p is the 

residue characteristic of u, then 

(a) pe and pee are unramified at u, 

(b) P,,e and Pv,~l have coefficients in h[l/p], and 

(c) P”,C = pIl,et. 
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We remark that when F is a number field, every compatible system of integral d- 

adic representations (I.2 of [ll]) is an almost integral compatible system of t!-adic 

representations. 

Theorem 9.4. Suppose k and n are positive integers, and F is a global field of char- 
acteristic not dividing n. Suppose that S is a set of prime numbers which contains 

all the prime divisors of n but does not contain char(F), and suppose {pe: L’ E S} is 
an almost integral compatible system of /-adic representations 

pc : GF + Aut( V,). 

Suppose that for every prime divisor q of n, T4 is a GF-invariant lattice in V, such 
that for every o E GF, 

(p,(o) - l)k E nEnd(T,). 

Suppose e E S, let 2, be the Zariski closure of the image of Gr under pe, and let 
@t denote the (finite) group of connected components of 2,. Then the exponent of 
the group @e divides R(n, k). In particular, tf n 4 N(k), then 2, is connected 

Proof. Let 2’ be a connected component of 2,. It follows easily from the Chebotarev 

density theorem (Theorem 12 on p. 289 of [18]) that we can find a place v E ZF - 

lJqlneSe,,, of residue characteristic p not dividing n, and a Frobenius element Frt,, E 
Im(pe) associated to v, such that Fre,W E 2’. Let cp = Fre,W. Applying Lemma 9.1 

to the Frobenius elements Fr4,W for all prime divisors q of n, we conclude that the 

eigenvalues CI of cp satisfy (CI - I)k E nt[l/p], where i? denotes the ring of algebraic 

integers. Let D = det(cp). Then D is the product of the eigenvalues of cp, and D E 

(1 + n’ikz[ I/p]) n Z[ l/p]. It follows that D can be written as a fraction such that no 

prime divisor of n divides the numerator or denominator. Let M be the multiplicative 

group generated by the eigenvalues of cp. Then M is a multiplicative subgroup of 

the multiplicative semi-group 1 + n”k&l/p, l/D]. Applying Corollary 3.3 to 0 = 

z[l/p, l/D], we conclude that every root of unity A in M satisfies AR(n,k) = 1. Let 

M’ be the multiplicative group generated by the eigenvalues of v~(“,~). Then M’ = 

{/P’“,k’ : /I E M}, so M’ contains no non-trivial roots of unity. By Lemma 9.2, the 

smallest algebraic subgroup G of Aut(Tl) containing ~~(“3~) is connected. Therefore, 

cp R(n,k) E G & 2:, the identity connected component of 2,. Since 2’ is a coset of 2:, 

we have 2’ = (~2:. Therefore, flcflk) E 2: for every y E 2’. 0 

Suppose X is a smooth projective variety over a global field F. Let 2 = X XFF$, the 

variety obtained by extension of scalars. Suppose i and j are integers and j 2 0. Then 

GF acts on Hi@, Z/ma)(i) for every positive integer m not divisible by char(F), and 

therefore acts on the twisted &tale cohomology groups Hj(_J?, Z,)(i) for every prime 

/ # char(F). If e is a prime and L # char(F), let Le be the quotient of IIj(x,i&)(i) 
by its torsion subgroup. Then Le is a &lattice, and we can (non-canonically) identify 



A. Silverberg, Yu. G. Zarhinl Journal of Pure and Applied Algebra Ill (1996) 285-302 301 

Am(&) with GLb(Z,), where b is the jth Betti number of x (note that b is independent 

of e). Let pe denote the associated e-adic representation (see Section 2 of [lo]), 

Pe : GF + GMG). 

Corrollary 9.5. Suppose X is a smooth projective variety over a global field F. Sup- 

pose i is an integer, n and k are positive integers, j is a non-negative integer, e is 

a prime number, and char(F) does not divide n4. Suppose that for every a E GF, 
(a - l)k kills Hj(z, h/nE)(i). Let 2, be the Zariski closure of the image of GF 
under pe, and let @e denote the (finite) group of connected components of 2,. Then 

the exponent of the group @e divides R(n, k). In particular, if n $ N(k), then 2, is 
connected. 

Proof. For every prime q # char(F) and positive integer r, there is a natural injection 

of Hj(??, Z,)(i) 8 Z/q??? into Hi@?, Z/q’Z)(i) ( see Lemma 1.11 in Chapter V of [7]). 

Suppose that (r E GF. Since (a- l)k kills Hj(_J?,Z/nZ)(i), we have that (p4(o)- l)k E 

nMb(Z,) for every prime q # char(F) (where b is the jth Betti number of x). By [3, 

41, the representations P[ for e # char(F) form an almost integral compatible system 

of /-adic representations. We now apply Theorem 9.4. •I 

Remark 9.6. Conjecturally, an analogue of Corollary 9.5 holds with the twisted &ale 

cohomology group replaced by the Z-form of a motive (as defined on p. 387 of [12]). 

In this setting, the Weil conjecture on the independence of the characteristic polynomial 

of Frobenius is an open question (see Conjecture 12.5 of [12]). 

Remark 9.7. Corollary 9.5 remains true for varieties over finitely generated extensions 

of Q. The proof is based on the Chebotarev density theorem for these extensions 

(Theorem on p. 206 of [5]) and a variant of Theorem 9.4. This variant is obtained by 

modifying the notion of almost integral compatible system of L-adic representations to 

this setting (compare with pp. 108-109 of [17]). 
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